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SOME ASYMPTOTIC PROPERYTIES OF FUZZY SET SYSTEMS

I.R. Goodman -

Naval Ocean Systems Center
Surveillance Systems Department
Systems Research Branch, Code 7223
Sar Diego, California 92152

ABSTRACT

Tor any choice of t-nporm for conjunction, t-coxorm
for disjunction and some complement operator, a fuzzy
set systea may be determined. All properties and defin-
itions wey be obtained through the use of multivalued
logic theory. Previous !nvestigations by the author for
such systems has led to rather general characterizations
for those fuzzy set systems which admit wveak hozmomor-
phic randcn set representations. (By "week", it is
meant that identification between fuzzy and random sets
is through the one-point coversge functions of the
random sets and the mexbership functions of the fuzzy
sets,) Frank's family of t-norms and t-conorms pleys &
key role in these characterizatiors. It is shown that
by developing conditional fuzzy sets-and Bayes'theorenm
in this general coptext, a meaningful type of fuzzy
Central Limit Theory mey be obtained for not only
Frank's family, but for other families of t-norms and
t-conorms.

\
1. INTRODUCTION

In previous work, a number of close connections was
established between fuzzy set theory and- probability
theory. This basically lavolved the (many-to-one) cor-
respondences of random sets to fuzzy sets through the

<E;;§oxme:is.9ne-polnt coverage functiops«(See (17 - (L1,)
ot

her parallels between the two disciplines wvere estab-
lished o (L) _where multivalued logic theory was used
as a bEEIE‘rﬁF’ZEnerating entire classes of fuzzy set
systens. Bach such system wes determined by a triple F
= ( Ypors Ve , Yor) of operators, where Y., is some-
upery invdlution or negationm,, 1s 8 t-norm-and . is
e t-conoryg (the latter tvo. sre gere alvays assumed to
be continjious, associative, and symmetric).(See (L] or
{ 5] for [general background on t-norms and t-conorms.)

Initigh was that of conditional fuzzy sets, similar in
form/ to that for rendom variables. Angther related con-
cept discussed in {Llves a fuzzy sct version of Bayes'
thdoren. (See (4] , eqs.(3.11) and (3.12}.)

\! One of the criticisms in-the past that has been-
eveled at fuzzy set theory users is the apperent lack
of both & finite and asymptotic sampling theory anala-
gous to the well established counterperts in probability
thcorx_£§3 Hovever, Dishkant (7lhes presented a begin-
‘ning of & Tizzy set version of “Jefitral Limit Theory..
Earlier, this euthor elso presented some rcsults in this
irection. (See (8] , Theorem 2.2.)

In this papur, the genesis of & fuzzy set sampling
technique is preseated, puralleling to & certain-extent
the ordinary Bayesian spproach to random sampling end
parazcter estimetion. As a consequence, &o analysis is
carried out concerning the structure of posterior possi-
bilities and related functions for toth finite end in-

finite sample size cases for various fuzzy set systems.
Although some fuzzy set systems are shown not to admit
nontrivial (i.e., either non-zero,or zero in the limit-
ing case b&E‘ytetdIEE'EKIEGZ—ESE:TaEn§é§flly zero forms
for the posterior possibility functions)’ asymptotic
forms , others indeed admit well-defined computable
results that also differ significantly from the finite
o example of the former is the

> clags of fuzzy set systems , in-
cluding those based on Frank's famdly as a special case,
is shown to admit computable finite and large sample
size forms for the posterior possibility functions end
related functions-{Theorem 9).

2. CONDITIONAL FUZZY SETS AND-BAYES' THEOREM

Before proceeding to the analysis , some brief
remarks concerniog notation-are in order.

¢,: X— [0,1] is that mapping indicating the
fuzzy set. membership, or equivalently, possibility
function for fuzzy set A. We urite A€ £(X) to indicate
that A is-a fuzzy subset of X, and if A is an ordinary
set , A€EP(X) indicates thet A is an ordipery subset
of X. Here, base epace X is an ordinery set.

Six important t-norm and t-conorm operators have
been specially labeled:
¢} min for minimm ,
).max. for maximum »
(3) prod for product, i.e., as in a.b.c ,
(4)_probsum for probabilistic sum, i,e., &s in
lu{l-a)-(1-b)e(1-c) .
{5) minbndsum for sum-subtracting one less than
argument number and bounded belov by 0, i.e., 6 as
oax( atb+c-2,0) ,
(6) maxbndsum for sum bounded maximally by L, i.e, as
min(l, a+tb+c) ,
vhere a,b,c €{0,1] are erbitrary; the definitions
extendable to 1,2, aad b or more arguments .
(see (4] and (5] for various properties of these special
t-norms end t-conorms.)

Also, note the use of the symbol [0,1] to meen the
closed upit interval. Similer definitions hold for
{a,b) , the left open at a, right closed at b interval,
etc. As usual, ¢ indicates ordinary element membership;
but if a subscript is used-pss in €, , e.g., this is a
positive constant. Theé small black square ® indicates
the end of e theorem, lexma, or remsrk. Other notation
vill be explained as introduced.

Definitions
et Xy and X be two given basc spaces end wa any
t-norm. For any A¢ F‘(Xlx ) , define a projection

B(A)EF(G) vy op (a)(x)2 worxa(p;‘(xl,xgi); xex)
X €
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and similarly define p (A)€ F()Ld). Then it follows
from basic properties < of t-norms that all Xy € Xy, J=
1,2, there are (pl(A)I )-€ F(Xl)r aad (p2(A )B] xl) €
£ (X,), called conditional fuzzy se%s , such that “for
all le,xej '

= Wl Sip ()1 xfx)s B (a)(32))
= Vel P(py(n) ) xl)(xe)»d>pl(A,(xl))

whica are Iuniquely determined over supp( Z)A ) ¢
( ) (x,%)>0 provided is” strictly

131;’63243 i?"ezkhxzagguzzet,xt. Note c'n?:n i AeP(X X X))
then p:(A) is the ordinary projection.of A into X
and (PZ(A)I )}, say, is the section of A in X, giécn
xy. (See, e.g., (9] for background.)

It then follows immediateiy that a fuzzy set form
of Bayes' theorem is obtainable,

gb’\(xl,-,“o_) (1)

Theorem L. Fuzzy Bayes' Theorem.

Let Ae £ (X X X;) with Y, @ strictly increesing
t-norm. Then over supp(A), (py(i)] %) 1s & function of
(»(A) |+ ) and py(A), determined implicitly Zroa the
following equations :

Yl (P(pl(A) | xz)(xl)’ ‘PPZ(A)(‘?‘Q)) (2)
=Vl D(ga(a)] %)) Pry(a3lxe))
vhere s
Doy ¥or, (¥alP(oyn 1 xpe)s Bey(a) )
o ' (3)
Remark 1. .

Kn obvious analogy holds here with respect to
stendard Bayesian modeling. We can interpret (po(a) 1)
to be the condiricoal fuzzy date set, p.(A) to be the
prior fuzzy parameier set > (P.(A)| %) to be the
posterior fuzzy parameter set, andt P (A)2 to be the
aveTaged fuzzy data set, where may“be considered
& fuzzy outccrz, (in the Bayesian formulation, ¥, =
prod end ¥__ is replaced by an integral or sum which is
possibly weighted,)

Iz conjunction with the above remarks, we will
agsume thet the following general fuzzy ssmpling exper-
iment holds:

’\aih gl(A) is known, but A itself is not known before-
and.,

(®)  (px(A) ] ¢) 1s obtained empirically, scmetimes

through buman sources, via a panel of "experts”

(rether than from the unknown A via Bayes' theorem).

Theorem 1 can then be applied, vith the above in-
terpretations, to obtain the desired posterior fuzzy-
parexeter set. The key computation lies in the evalua-
tion of ¢‘p,!A) in equation (3) . Yo eddition to (a)
and (b), asdume that the following modification holds:

First define the weighted averages

d ' SR
Yn,§ = un,J / J};lun“} ; J=l,..,n (8D

2 0 ere coastants, and the normalized
prior set wy is given by

1
W w
?ﬁre ’d
o+ fuzzy

by (vy) = vy 55 3Le00m (s)

ochcrvise,d}_,,‘ is zero.

I2 & paoel of experts is used, cach yJ represents
expert J, st Xy J=1,2,.. .

(¢) Formally replace for each n2l in eqs.(1),(2),
pl(f\) everyvhere byw  aad denote the subsequeat

vilue of 41’2 (») by ‘P,\n ond (p(p‘(;‘) I xp) by

- unifzroly in X

Uzgizg) -

. ]
The pext theorems con.ern the asympto*ic behavior

ot’qun and hence of ¢(Bn,x?)(y‘j) as n = .0 , Pirst

define 4 s
%, 502) F By ay) gy g,y o 16
ay(x) = ‘%('pa(r‘«) I 93)(“2) E (1
d.
b5, () = &t (8)

3. ASYMPTOTIC BEHAVIOR OF AVERAGED FUZZY DATA A
POSTERIOR FUZZY PARAMETER SEIS -

Theoren 2.
Suppose the conditions for Theozemlhold with modi-

fications (a),(v),(c), for each n2 1, and suppose the
constont sample means cqaverge:

lim @3 (x x exists; .
(o ¢An( 2) 2Pz (xe) exists;xyeXp (9)
Suppose also for all n:l,

a-n~€ 2 v!; ¢ 0.0 , (10)
where 0<¢as<b and e,,e’,'lo .are all constants, with

§ *+€3 < 1.

Thus,
0<C ¢vy, 3¢ D ; §=i,..,0 , (L)
o¢c, ¢ (afo)n-(Irar&)cy , (12
0¢<p_ % (b/a)-n-(1l-€-€a) < g (13)

vhere it ic assumed  that n>ny d (b/a)l/(l:‘-l'eg-)
Note thet for wi 4 =1, w, j = 1/n satisfies (11).
Then for thé fuzzy set” system determined by

(‘*’nct;‘}’&,y"or) =
and all X2€ XZ B

{1-(-),prod,probsun), for ell n,

a

¢, %) = l'JUL“"’"’ 3(x)) 5 (1)

b ()€ -loa(l- By ())edg (x)-(145),  (25)

ival
o l-eirgﬁ(xa)é P A (xz) < l-e"pxn(x’)'(lhr“)(l'i')
vhere, a o
J, = -(los(l-Dn) + Dn)/Dn . (16)
e, BT, (/@) <0 0
Mz, Py (5) 20, () = 2R ), (ag)

€ with convergence rate determined
(16 S Thus, for large n, ell YJGXI:

2y, (%) (1-e~ PAL32) (19)

by eqs.(15'),
end all X,

q;(gn“%)(yd)"'
(Proof: Using
(20)

-log(1~ @An(xa)) = z‘j fz'an,,,)“/k is o uniformly - in
=1 Rz}

Xy € xz-and abso,l':xtclv convergent double series. Factor
out the term ¢En\x2) , yielding

—l k 2 .
é;( /¥ ;Z;:xun"j /J;. n,J)), (21)

< & - )
o'an,J(xa)'Dn<1',n>no ’

Then consider the folloving lemma:




femms 1.
Ir o s.uJ!_v ; J=1,..,n , then for kal,2,..
n
Z k ;0 -1
u u, < .
PR .-
. Using Lomze 1 and eq.(20) in (21) ylelds a series
on the right hend side of the inequality equivalent to
(15).) n

(22)

Next, consider the asymptotic bebavior of ¢A ()
for three other fuzzy set systems. o

Theoren 3.
Suppose the same- couditions hold as in Theorem 2.
Then
(1) Por the non-De Morgen fuzzy set system given by
(¥ oot Yoo ‘,Uor)=él—( +),prod ,maxbndsun}, (23

P, (%) = ain(l, Pz (x,))
end n n
r];i-.l’neod;An(xg) = (px‘o(xa) ’ (2‘&)

uniforzly in xzexz. In tern, this isplies for lerge n

Pog 13005 ~ o7/ P g (%) . (25)
(ii) For the fuzzy set system (1-("),min5mx)' 5

Paglie) =y | (mtalaylig) vy,
£p, , (26)
and
s ¢An(x2) =0 . Yet ,
Plojup 7y = mol o)y, ) - (21)
(ii1) For the system {1-{-), minbndsun,raxbndsum),
(pAn(xg) = nin(l, .-XMGJ(Q)Wn,J'l’O)) . (28)
(I)Hfordln)t)x;, P
a > 1
og“ zfcz.rd{ ill}.: J;;, 12 aJ(xa)rz 1-D } 4¢) -0 \‘1(?.9)

n.d =
$n ¢ card{ J|1¢J¢n, lZEJ(xa)Z l-l/q}gcl.nl'xi(w)

for some coostants 12 Yl> El

+ €y, 127,>0 ;>0,
then uniformly in x5 ,

2

L @y () =0 . (51)
(1) If'un’J - 1fa and
¢ S earaf fl1244n, a(x) =2 cpen, (R)

for constaflt ¢,y L2cp>0 , then

2
n_J;% ‘PAO(XZ) Cg . (33)
(Proof: Use the relations, fizst for u, ¢ general
- 04 @ (%) (101,07, %)
and Ap

aia(L(1/n) ;) ¢ & () ¢ atnlL,(1/a)t) , (39)
for v El/n .) o

u, S | ]
Remerk 2.

Svaluation of P 3 (y,) %n (4ii) poses certain
complications and vn& ol J(Q)be‘s omitted bere.

Anslagous to the computations of avereged rendos
end posterior probebility functions , nontrivial aver-
eged fuzzy data and posterior possibility functions may
be obtained, even when ®, fx,) approsches 0, due tr
tke normalization form in 7 eq.{(2). =

It is of some interest to determine if relatively
simple sufficient conditions exist for ¥ J and c.J(:%)
vhich insure eg.(9) holds. This is next ~’“shown.

Theoren b,
(1) Lec wg>0 be such that for all §=1,2,..

314

Jwgmer'l < et 3(1+ €0) , (36)

for constants o 'sc", €570, ond replace (L) by

- n ,
Yn,J = ¥y /k§1 Yk 39=L,em . (3T
Suppose also for all %€ 5

un ('l/n)‘él ay(x,)  ag(x,) extsts.(38)
Then for ell Xye X, ,

Pro (%) = 2olxa) (39)

with convergence rate given by, for n > cz'-( l+(l/eo)/ci
| (pxn(xz)-(l/n) . E,:i‘l(xz) I (o)
£ (1/n)-cp' (1+(2/n)ep(1+ €,))/(c;'-(cp"/n) P(1+ €,)),

where o)
pre) & Lyl cro L g

Bquation(10) remains valid and thus all conditions
for Theorems 2 and 3 hold.

(14) Equation (38) holds iff there-exists real by(xp),
ba( Xp), ... Such that ij(xz) -converges and for ell J

ay(xp)-a51(x2) = 9+{by(x2) by 17x5)), (k2)
in wkich case for all X%, ¢X,,

0]
o) =3 v () (43)

and

b(%,) J§'§ Cayln) -y {m))/(34) , (b8

for &3l n=1,23.. .

(Proofs: Eg.(k0) ixplies (i). For (11), use the results

on Cesaro convergence of order one, modified by all

series-as given replaced by telescopic ones , as found

in Hardy (10) , Theorems 43,66, ani 77.) a

L. ASYMPTOTIC BEEAVIOR OF FRANK'S FAMILY, YAGER'S
FAMILY, AND A GEMERALIZATION

Counsider now Fronk's De Morgan family of t-norms
and t-conorms (L3, )
Wy, o(%5¥) = Logg(1#(s*-1)(s¥-1)/(s-1)) (15)
"‘Ucv- s(’x::") = 1"?"&(1-3(,];-Y) ) (L€)
for all x,y ¢ £0,11, and extendable in the cHvious
vey to erbitrary erguments for sll ¢, 04 s ¢t . The
ceses s=0,1,+c0 sare a1l limiting speciel cases with
%,07 vcr,(l) = (min,max)

( Y’&,.L’ \on-,]_) = (prod,probsua) (37)

(v, M,,%r’ M) = (minbdsm,caxbdsa))”

It can be shown that t.is .fanily of operatesy, ead
avre generally, ell ordimal sums (k) of this famly
characterize the(associative)t-nora soluiions of the
functional equaticn , true for all x,y€(0,1]

Y (x,¥) 219, (1-x,1-y) = x+y- Yo(x,y) . (LE)

(Again, seell] for a oumber of properties of this familys

The next theorem obtains asymptotic properties for

¢A (indiceting the presence of parsmeter s), vhere
n,s n (S‘:-%-(Sa‘j(xa)—l)(svm.]_) \
®,  (xp)=l-logg|{1+(s-1)" ] : :
n,s 321 s-l)(s-l-*(s“.l( *2a1)(svoday
(u9¥

.

Define for O < s<+o arbitrary fixed, srl,xzc %,

=1,2,...
;n,d,ﬂ("?) 4 (s230%) 1)(s¥ns-1)s/
((5'1-)( 5-14‘( :‘nJ( xz) ;l)( svn_, -l))) (w)




s (¢

n 3 Z an’J’g(’%) ’ (51)
Tn,s &s/(s)1esDn) (52)
Jn’s = "(llrn,s)(108(l‘rn,5)+rn,s) . (53)

Central Lizmit Type Theorem for Frank's
Panily,

Suppose that assumptions (a),(b),(c) hold and that
eq.{10) holds. Then

(1)

Theoren .

0 ¢y, ,S(XQ) Tn,s <1 (54)
0 ol % tog( (1~ Phn,5172) D62 £epe()10300
and equivalently,
1-1og5(1+(s-1)e"ns("2)) £ ‘Pnns(xz)
<z l-loss(l+(s-l)e'rDS(xz)(“Jnsb'(55)

lig r
n=-r+=0

oriZ Jo,s i3 (rnrsl( 1-rg,s)) =0

= 0
0,s ’

(56)

(1) lim (-log(cl" ¢Ans(x2)_1)/(5_1)))

n~< Zlos(l- ap, 3,6(%2)))

RERE NN foo,sl72) +
oo,s("a) exists ifr

Lz, &, (%) = 1-log_(1#(s-1)eFg,6(x2)) (58)

exists , uniforzly in €
given by eqs.(55) and x%6)

(s1m)
(111) Thus

, with convergence rate
In turn, for all large n,

U a1z}t ¥g) 1o, (1’((53"(’( Y1) (sas-1)e
“(1+(s-1)e~50:202) ) /(5 1) (10 5, (xa)))) (59)
]

The next result presents simpler convergence con-
ditions, equivalent to, or sufficient for, £, . to
exist, vhich ylelds eq.(58). ’

Theoren 6.
MakXe the saze assumptions es in Theorez 5. Then

(1)
(s/max(0,1))5, (%) € £, (x) s(a/m(s"n,n)sn,s%gg;

where

B, 5(%p)% (2/(e-1)%) )5 (6o0(x2) 1)(e¥as1) . (61)
J=1
it Lo ,s(x2)= s-gw’s(xe) exists (62)
Ualen, o)) 5, () extsts . (63)
(i1) Ir
Un( a.(s 1.1-1)/(..-1)) = U, exists , (&)

undforsly $6 Y, =L, -, end if
Li=((1/) Z (s23(72)1)/(s-1)) € 01 (x5) extese
than gw,s(a%) and bence fcc,s("z) exist with
8.s,60%) = Hg(%)- vs - (66)

(111) If vyj =} end hence vy = 1/a , J=1,..,n, thea
v, = (1/(5-—1))103 & exists, (67)

and if . (x,) also exists, then so-does
8,00%) = #_(x).(2/(s-1))1og s (€8)

fo,st%) = #elmp)(s/(s-1))108 s , (69)
izplying the exdstance of

and

n]::—i?o d’A (Xz) = l-log (l.+(ssl‘ ,S-(s/(s-l9 ”S(x2)>

(70)
{Proof for Theorem 5 : “n,J,s(xz) can be written
as b, -f(t) , t(t)gt/(bzn) , gs/(*‘-l) b, s, td

(saJ(xa)-l) {(8"03-1) > 0. It fcildws ( for both O<s< 1
and 1<s ) that 05b £(t) 21 vwith b, £(t) 1ncrcusing in
t, vith maxipal possible value at t=(s-1{sPn-1). This
,fields eq.(54), and in turn,

-los(sl'¢Ans(x2)-l)/(s-l)) = -r"‘log(l anys(x))
k}:z (anJ,;(xe))“/x ) (1)
= £

by a rearrangement of the uniformly sbsolutely conver-
geat double series. low

0f,(x) < v ): Copyelx))¥/x <1, (%) (148,(x5))

k=t j=1 (12)
wbere

335(3‘2)“2(1/‘<)c jox(®) (13)

Cpgesy) & i o) el €x BT, ()

by usipg eq.(S4) and Jemma 1. Using (73) and (75) in
(72) yields en upper bound on the right hand side in2
series form lesding to eq.(55).

Proof for Theorem 6: For (i1) use

1845(3)- & (xe)«usl < 1s-1 1 %, {n(s¥nd-1)/(s~1)-u;]

+1/a)( z(s%(*a)-l)/(s-:) ~u ()} (75)
s
Theoren 7 presents the limiting for=s for Theoren

Theorem 7.
(1) s=L . ALl linitiog results as s epproaches 1, are
compatible with Theorem 2 .
e Aqe(x2) = 8 4(x)
SLIp Tnslxe) =145 8z5(30) = Pz (%)
R (;ca)) ¢, (%)
La (“Los((s' ™ PA 20 gy (s 1») ~log{1- @, {xa)
51_.’121 Ths = Dn
li.r.-. Jns = Iy
‘1:: a(s¥24-1)/(s-1)) = ’

sS—=1 2
JHim C) 23X _ 1y fes-n) = (l/n)Zl,(x,)

and eqs.(55),(58), aod '(59) buecorz: respectively
(15'},(18), and 219)-

(%1) 5=0 . Except for

s-ri'é' 6ms(xz) ="
all of the ressiaing frportant forms as licted in (&)
beegone O,

(118} 5=+
15, Hagalm) = 0 AL aylm)euny <1, oF if

ay(x) 20 0P Af %0 ,  (76)
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. v limelpi(x) = ¥, if 0<aj(xy),vqy and
sotonist) = 7, J ;_'z:ln,j'

a{z) v (27)
lind (%) =1, i 0<ayx),v,, and
o 0 2 “s(xe)*‘gn?;lnj : (78)

These relations can be used to compute lim £ (x,) and
lia g (%) . 5o 05 2
3= *

In .
sz'auo"ns

sl"iao Ans(XE) =i, BJ(XZ)WM <) ’
iz (-tos(s Pags ™) _1)/(e1)) = 40, (80)

(x,) =0, 1f a,(xy)#=, 1
2 A (1)

35% ns 1 ’ (81)
Aottt )

La Uz ¢, (xp) = lin (£44(x) 208 5) . (83)

SHv0 Q=ren
L

The next result is connected with Yeger's family
of t-porms and t-conorz=s. In raview, Yager U111} hes
proposed the Minkowski-like forms

e, o(%¥)¢ max(1-((1-x)P+(1-y)P)}/p,0) (8+)

(008 1, (1-x,1-y)=nta( (P+y?)VP 1) | (85)

Yor,p “ ¥
for ell x,y€09,11;1< 0%+« . In addition,
et pal, (¢, _, ¥ _ _)=(ciobndsuzm,zaxbndsun)

!‘7? O'l',p

et Pt (V’&’p; ’,Vor’p)= (ain,zex) ;

(86)

. (prod,probsus) is not in the family. (See [L3, Remark
6.2 for other properties.)

Theorea 8.

Mabve the seme geperal assuzptiozns os in Theaxren 5.
L)
Ther

(1) 7er the (De Morgen) system (1-(-), ¥z p, ¥or,p) »
¢An'p(3‘2)=‘:‘-in l,S:}; zax p(l'(o"aJ(xa))p+(1-",,3)9)1/1’,

o))y, (87)
(1) 1f ay(x,) £1-(pD)}/P ,then ¢Anp(xz)=°-

(1)

¢Anp(x2) £hnp1/p,nn <a/p D, (88)
vhere

d . 21/p
oo card { § 11 €3 ¢n & ay(x,) > 1-(pDy} }. (89
Thus, if eitber p>3/(1-€-6,) or £, 1;):,&,(1-«;10
vhere 12d,> €+ €5 , then

a2 (<) =0 (50)
(1) Por the non-D= Morgen syst::: (l-(’),"}’&,p, wor,p)
b, (x) = 21a(1,(Tleny(x))P)H?) , (1)

“np =1

an egsier forz to work with than in eq.(87).
Suppose aow “ Jsl end

Lim (1/n)fz{(aJ(ze))P$ 0(0) (@)

D~
exists. Then for large n ,

(P“nn( %)~ acl l-l/p)(’?( %) , (13)
P, ror Y0 ) g )atfo. (50)

u=nd

{Proor : Use the incquelity
1-{p 6 /P €1-(1-(1- 5 )9) VP |

wnere p2l, Wp>§ 26, for (1). ) L

Finelly, in.Theorem 9 e generel class of operators
is -considered for asymptotic behavior.

Theoren 9. Centrel Limit Type Theorez for & Class of
Analytic Operator Peirs.

Agein, =ske the same geperal assuzptioas as in
Theoren 5. Suppose also that (1-(.),%,, ¥r) 1s 2
De Morgen systea vhere ¥, bas a gencrator b: ©,1~+D,+Q
vhich is strictly decrecasing with h(0)=+4 ,h(1)=0. ’
(see &) or 15] for further det&ils oo generstors.)
Then

n
(1) d)ﬁn(:@) = 1-b7Y( E(h(l-"‘}'&(vnd,ad(xz))))
£ 1071 Fon(1vyy))
J=L
£ 1-h~}(a.n(1-0,)). (95)
Thus, if
s 1o (o-n(1-ny)) =0, (96)
nl—&mho ¢An(x2) =0. (91)

(11) Suppose also that for eny fixed ¢ € [0,1).,
¥,(z,c) is anslytic in z ebout some neighbornood of O
and that h is enalytic vithin soce fixed -neighborhood
of - and below- L. Suppose, further, that in eq.(10) ,
U@ + €5 <t end that

n
2ol T A)vag) $80) exots,  (58)
vhere for J=1,2,...,
By U aulzemez )y - (99)
Finelly, defioe )
A ={an(z)faz) , 2 0 . (100)
Then, unifér=ly fa a1l %€eX, ,
3 . - T
Glx) > 1m D, (o) = 1M ¥ (0))  (190)

exists, eand for large n

-1
L RTRICARE (bgghenlo () B, (22))-

{Proot: (1) follovs froa tbe conotone property of h.
For (1i): Bxpend out in a power serfes the function
h(1-Yp(z,clia z, yielding for all sufficiently szall
z, for c:a.J(xz) et z=w, .y :

B(1- Y (z,e)) = g Bylxy)-z + (K=B), (103)

O( za) indfceting the remaining series haes powers of
z to at leest 2 . Substitute (103) into the first part
of £q.(95) , noting that

> O('-,,Jz) ¢ a-(Xp.2) = Q(nf-20€ 5> €2)))) (10%)
J=t X

Rezexrk 3.
Tor frank's femily, the conotoae generator h is
fer all x € {0,1)] , 0<{s<{+» fixed ,

hs(x) = “Log((s*-1)/(s-1))

by(x) = -log x ,

for s ¢ 1,
(105)

for s =1,

sad b, 15 anelytic ebout L and ¥, (z,c) is ecalytic
atout 0. Also, »”
(%) = ebsley(®2}) o (s2M(x2)o1)/(5-1) ;521

B8
s (106)

Bll(ﬁ) = c'hs(aj(xg)) - u\!(xe) ; s=l .
Ia nddition,
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= g-d0g sf(s-1);s # 1
Ao,s ’ (107)
XO,]. =1 ; 3=1 . 3.

Thus the con(rl\iticn in ¢q.(98) becomes
L Z((s'=J(=<e>-z)/(s-l))uuj Lo dm)

exists. (This corres ponds to (57),(65), and (38) (the L,
latter for s=1).) Lastly. eq. (101) becomes

(xp) = 1-los_(1+(s-1)s~(s/(s-1))Bslx2),
»5

for s r1 , and (w9) 5-

lin .
o>

r . (%) =1-e-91(x2) ;s=1.
B— O By s

in €2.(209), By(xp) =Gz (x;) and Bylxy) plays the

6.
role of ”s(xa) in eq.(70) . (See also eq.(58).)
5. SUMMARY AND CONCLUSIONS 7.

Coaditionel fuzzy sets end a forz= of Bayes' theorex
vere first developed (Theorem L and Remark 1) in a gen- 8,
ergl t-oorm, t-conora setting. This led in e naturel
vay to tke concept of a fuzzy set sexpling experiment,
requiring cosputations for averaged fuzzy data sets and
posterior paremeter sets, through the respective pecber-
ship fuactions. The esymptotic behavior, as sazple sizes
increase, for these two criticel types of fuzzy sets 9
was the focus of the recainirg paxt of this peper. A
ouzber of specific systems vere first irvestigated. loa-

trivial results were obtainsd for the systex 10.

£1.(.), vvod, provsuz) (Theorem 2) end the con De Morgen
systez (1-(-),prod,zaxbndsun) (Theorea 3(1)). However,

other fuzzy ecet systems vwere shown either-to lead to 11,

triviel res:lts, such as (1-(-)},nin,z=ax) (see-Theorez 3
£13)) , or to socevhat cocplicated forms of dubicus use
(sce ’f'hno*c:: 3(141) aod Theores 8(1)). A c=odification
of Yeger's fexily zay prove useful (Theorem 8(11)).

More genmerslly, it vas chown-{Theorezs 5,6,7) thet
Propk’s lerge De Morges feaily of t-nors=s and t-coporTs,
including thbe special case (1=(-),prod,probsun), ad=its
rontriviel esycptotic results. Still more generally, it
vas shown thst for 2y set systezs based on De Morgen
t-nor=s and t-conorzs which bave strictly increesing
senerstors and vhich satisfy en apelyticity condition,
feasible esy=ptotic forzs for-the two critical functiozs
ore obteinable (Theorez 9).

Puture work will desl with further develcpaeat of
e fuzzy set secplicg experizent. Ia eddition, the
following icportant problezs will be considered: rendec
set iaterpretstions of the basic results obtained he e
{vie the homomorphiszs developed ,e.g., in UL ); appli-
cations of these resulis to genersl problezs of paremaier -
estination whea soz=c of the inforzation is ia vesue or
linguistic fors; closer tie-ins with the Lavs of Large
fu=bers; and determinstion of which fuzzy set systea is
=0st appropriete for a given estimntion problen.
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